
A FINITE DIFFERENCE APPROXIMATION FOR A COUPLED SYSTEM

OF NONLINEAR SIZE-STRUCTURED POPULATIONS

A.S. Ackleh�, H.T. Banksy and K. Deng�

Abstract: We study a quasilinear nonlocal hyperbolic initial-boundary value

problem that models the evolution of N size-structured subpopulations compet-

ing for common resources. We develop an implicit �nite di�erence scheme to

approximate the solution of this model. The convergence of this approximation

to a unique bounded variation weak solution is obtained. The numerical results

for a special case of this model suggest that when subpopulations are closed

under reproduction, one subpopulation survives and the others go to extinction.

Moreover, in the case of open reproduction, survival of more than one population

is possible.

AMS subject classi�cation. 92D25, 35A40, 65M06

1. Introduction

In this paper, we consider the following initial boundary value problem that describes

the dynamics of coupled size-structured subpopulations with nonlinear growth, reproduction
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and mortality rates:8>>>>>>><>>>>>>>:

uI
t
+ (gI(x; P (t))uI)x +mI(x; P (t))uI = 0; (x; t) 2 (0; xmax]� (0; T ];

gI(0; P (t))uI(0; t) = CI(t) +

NX
J=1

Z
xmax

0


I;J�J(x; P (t))uJ(x; t) dx; t 2 (0; T ];

uI(x; 0) = uI;0(x); x 2 [0; xmax]:

(1)

Here uI(x; t); I = 1; : : : ; N; is the density of individuals in the I-th subpopulation having

size x at time t, and

P (t) =

NX
J=1

Z
xmax

0

wJ(x)uJ(x; t) dx

is a weighted total population at time t. The function mI denotes the mortality rate of an

individual in the I-th subpopulation, and �I is the reproduction rate of an individual in the

I-th subpopulation. The constant parameters 0 � 
I;J � 1 represents the probability that an

individual of the J-th subpopulation will reproduce an individual of the I-th subpopulation.

The function gI denotes the growth rate of an individual in the I-th subpopulation, and

CI(t) represents the in
ow rate of the I-th subpopulation of zero-size individuals from an

external source.

The model (1) is a generalization of several size-structured population models (often re-

ferred to as distributed rate models) which have been widely investigated in recent years

(see [8, 9, 15, 16, 18]). Motivated by the fact that, in addition to observable characteristics

such as size or age of individuals, non-observable genetic characteristics may often play a

critical role in the development of the individuals, researchers in [8] presented the �rst such

generalization of the classical Sinko-Streifer model. There, the population under consider-

ation was treated as being composed of several subpopulations with di�erent growth rates,

i.e., there are inherent di�erences in growth between the individuals of the population. This

results in a system of equations similar to (1) with the parameters gI; �I and mI being in-

dependent of the total population (i.e., e�ect of competition is not accounted for). In [8] it

2



was shown through numerical simulations that there is a crucial di�erence in the dynamics

of the classical Sinko-Streifer models and those of the generalized models. In particular,

the classical models cannot have dispersion of the density of the population in age or size.

Therefore the classical models are in con
ict with most of the �eld data collected by exper-

imental biologists (see [8] for more details). In [9] an approximation method for the inverse

problem of identifying the growth rate distribution was studied and convergence results were

presented. This method was subsequently applied [18] to a semilinear model where only

the mortality rate mI depends on the total population due to competition. Moreover, the

convergence results for the inverse problem were extended to this setting. In [10] the inverse

problem technique was used to �t �eld data (mosquito�sh data which attains dispersion of

the density) to the generalized linear model. The resulting data �t in [10] indicates that the

need for such modi�cation is crucial if these models were to be used as prediction tools.

When N = 1; problem (1) reduces to a classical nonlinear Sinko-Streifer model that

describes the evolution of one population with possible competition between individuals.

For the linear and semilinear forms of such a model (where g = g(x) and � = �(x)), several

approaches have been developed in the literature for establishing existence-uniqueness of

solutions. For example, in [11, 12, 19] the semigroup of linear operators theoretic approach

was used to obtain such results. Monotone approximations are developed in [1, 2], and upon

passing to the limit a solution to the problem is obtained, whereas uniqueness is obtained

via comparison results. For the quasilinear case (where g = g(x; P ) and � = � (x; P )), the

well-posedness has been discussed in [3, 13], wherein completely di�erent techniques were

used for establishing the existence of a unique solution to this model. In [13] the method

of characteristics together with a �xed point argument, is employed to prove this result.

A di�erence approximation is developed in [3], and upon passing to the limit a solution

to the model is obtained. Then the Holmogren Uniqueness Theorem is used to establish

uniqueness of this solution. To our knowledge, results concerning existence, uniqueness, and
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convergence of approximations for the general quasilinear case given in (1) with arbitrary N

are not available in the literature.

In this paper, we develop an implicit �nite di�erence approximation for problem (1).

Techniques in the spirit of those in [14, 23] are used to obtain existence-uniqueness of weak

solutions as well as convergence of the di�erence approximations. By a weak solution to prob-

lem (1) we mean a bounded and measurable function u(x; t) = (u1(x; t); u2(x; t); : : : ; uN(x; t))

satisfying Z
xmax

0

uI(x; t)'(x; t) dx�

Z
xmax

0

uI;0(x)'(x; 0) dx

=

Z
t

0

Z
xmax

0

(uI 's + gIu I'x �mIu I') dx ds

+

Z
t

0

'(0; s)

 
CI(s) +

NX
J=1

Z
xmax

0


I;J�J(x; P (s))uJ(x; s) dx

!
ds

(2)

for t 2 [0; T ]; I = 1; : : : ; N; and every test function ' 2 C1((0; xmax)� (0; T )).

The following regularity conditions will be imposed on our model parameters throughout

the paper: for any I = 1; : : : ; N

(H1) uI;0(x) 2 BV (0; xmax) \ L1(0; xmax) and uI;0(x) � 0.

(H2) mI(x; P ) is a nonnegative continuously di�erentiable function with respect to x and

P .

(H3) �I(x; P ) is a nonnegative continuously di�erentiable function with respect to x and P .

(H4) gI(x; P ) is a twice continuously di�erentiable function with respect to x and P , gI(x; P ) >

0 for x 2 [0; xmax); and gI(xmax; P ) = 0.

(H5) CI is a nonnegative continuously di�erentiable function.

(H6) sup
(x;P )2[0;xmax)�[0;1)

�I(x; P ) � !1.
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(H7) For any suÆciently small Æ > 0

sup
(x;P )2[0;l)�[0;1)

����gI(x + Æ; P )� gI(x; P )

Æ
+mI(x; P )

���� � !2:

(H8) wI is a nonnegative continuously di�erentiable function.

The paper is organized as follows. In Section 2, we develop a numerical scheme for

computing the solution of (1) and prove the convergence of this scheme to a bounded total

variation function satisfying (2). In Section 3, we present numerical results. In Section 4,

we show the continuity of the weak solution under additional conditions on the initial data.

Concluding remarks are given in Section 5.

2. Convergence of Approximations

The techniques used in this section are in the spirit of those used in [14, 23] to obtain

convergence of �nite di�erence approximation to conservation laws. However, it is worth

pointing out that there are some major di�erences between problem (1) and a classical

system of conservation laws. In particular, the 
ux in (1) is a nonlocal nonlinear function

of the solution uI (i.e., gI = gI(x;
P

N

J=1

Z
xmax

0

wI(x)uIdx)); whereas it is a local nonlinear

function in classical conservation laws. Furthermore, problem (1) is considered on a bounded

domain [0; xmax] with a boundary term that is a nonlocal nonlinear function of the solution

u; versus an unbounded domain R for a classical conservation law system. In the sequel, we

shall show that such di�erences result in two problems that are very di�erent mathematically.

In particular, it is well known that for a conservation law system it is generally not possible

to obtain a bound on the total variation for the approximating solutions, and hence to obtain

convergence one resorts to the compensated compactness method (see, e.g., [23] for details).

However, a bound for the total variation of the approximating solutions of problem (1) is

established (see Lemma 3 in this section).
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The following notation will be used throughout this paper: �x =
xmax

n
and �t =

T

m

denote the spatial and time mesh size, respectively. The mesh points are given by: xj = j�x,

j = 0; 1; 2; � � � ; n and tk = k�t, k = 0; 1; 2; � � � ; m. We denote by u
I;k

j
and P k the �nite

di�erence approximations of uI(xj; tk) and P (tk); respectively, and we let

g
I;k

j
= gI(xj; P

k); �
I;k

j
= �I(xj; P

k); m
I;k

j
= mI(xj; P

k); wI

j
= wI(xj) and CI;k = CI(tk):

We de�ne the di�erence operator

D�

h

�
u
I;k

j

�
=

u
I;k

j
� u

I;k

j�1

�x
; 1 � j � n

and the l1 and l1 norm of uI;k by

kuI;kk1 =
P

n

j=1 ju
I;k

j
j�x

kuI;kk1 = maxj=0;1;2;��� ;n ju
I;k

j
j:

We then discretize the partial di�erential equation in (1) using the following implicit �nite

di�erence approximation8>>>>>><>>>>>>:

u
I;k+1
j

� u
I;k

j

�t
+
g
I;k

j
u
I;k+1
j

� g
I;k

j�1u
I;k+1
j�1

�x
+m

I;k

j
u
I;k+1
j

= 0; 1 � j � n

g
I;k

0 u
I;k+1
0 = CI;k +

P
N

J=1

P
n

i=1 

I;J�

J;k

i
u
J;k

i
�x

P k+1 =
P

N

I=1

P
n

i=1w
I

i
u
I;k+1
i

�x

(3)

with the initial condition

u
I;0
j

=
1

�x

Z
j�x

(j�1)�x

uI;0(x)dx; j = 1; � � � ; n; I = 1; : : : ; N:

If we de�ne

d
I;k

j
= 1 +

�t

�x
g
I;k

j
+�tm

I;k

j
; 1 � j � n; I = 1; : : : ; N;

then (3) can be equivalently written as the following system of linear equations for ~uk+1 =

[u
1;k+1
0 ; u

1;k+1
1 ; : : : ; u1;k+1

n
; u

2;k+1
0 ; u

2;k+1
1 ; : : : ; u2;k+1

n
; : : : ; u

N;k+1
0 ; u

N;k+1
1 ; : : : ; uN;k+1

n
]T 2 RN�(n+1)

Ak~uk+1 = ~fk; (4)
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where

~fk = [C1;k +

NX
J=1

nX
i=1


1;J�
J;k

i
u
J;k

i
�x; u

1;k
1 ; : : : ; u1;k

n
; C2;k +

NX
J=1

nX
i=1


2;J�
J;k

i
u
J;k

i
�x;

u
2;k
1 ; : : : ; u2;k

n
; : : : ; CN;k +

NX
J=1

nX
i=1


N;J�
J;k

i
u
J;k

i
�x; u

N;k

1 ; : : : ; uN;k

n
]T

and Ak is the following block diagonal matrix

Ak =

0BBBB@
A1;k 0 0 � � � 0

0 A2;k 0 � � � 0

0 0 A3;k � � � 0

. . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 AN;k

1CCCCA
with the lower triangular matrix

AI;k =

0BBBB@
g
I;k

0 0 0 � � � 0

� �t

�x
g
I;k

0 d
I;k

1 0 � � � 0

0 ��t

�x
g
I;k

1 d
I;k

2 � � � 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 � �t

�x
g
I;k

N�1 dI;k
n

1CCCCA :

Note that using the assumptions on our parameters one can easily show that equation

(4) has a unique solution satisfying ~uk+1 � 0; k = 0; : : : ; m. Next we will show that the

di�erence approximation is bounded in l1 norm.

Lemma 1 The following estimate holds:

NX
I=1

kuI;kk1 � (1 +N !1�t)
k

NX
I=1

kuI;0k1 +

kX
i=1

(1 +N !1�t)
k�i

NX
I=1

jCI;i�1j�t;

and thus

P k � Pmax = max
I=1;:::;N

jjwIjj1

 
(1 +N !1�t)

m

NX
I=1

kuI;0k1

+

NX
I=1

mX
i=1

(1 +N !1�t)
m�i jCI;i�1j�t

!
:
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Proof. Multiply equation (3) by �x; sum over j = 1; � � � ; n and I = 1; : : : ; N to obtain

NX
I=1

kuI;k+1k1 �

NX
I=1

"
kuI;kk1 +�t

 
CI;k +

NX
J=1

nX
i=1


I;J�
J;k

i
u
J;k

i
�x

!#

�

NX
I=1

"
kuI;kk1 +�t

 
CI;k +

NX
J=1

k�Jk1ku
J;kk1

!#

=

NX
I=1

kuI;kk1 +

NX
I=1

�tCI;k +�tN

NX
J=1

k�Jk1ku
J;kk1

�

NX
I=1

kuI;kk1 +�t

NX
I=1

CI;k +�tN max
I=1;:::;N

jj�Ijj1

NX
I=1

kuI;kk1:

Since max
I

�I(x; P ) � !1, it follows that

NX
I=1

kuI;k+1k1 � (1 +N!1�t)

NX
I=1

kuI;kk1 +�t

NX
I=1

jCI;kj;

which implies the estimate.�

We then establish an l1 bound on the di�erence approximation.

Lemma 2 Assume that �t is chosen to satisfy !2�t < 1. Then we have the estimate

kuI;kk1 � max

(�
1

1� !2�t

�
k

kuI;0k1;
jjCI jj1 + !1

P
N

I=1 ku
I;k�1k1

�1

)
;

where �1 � gI(0; P ); I = 1; : : : ; N:

Proof. We �rst note that if max
i

u
I;k+1
i

occurs at the left boundary, then from the second

equation of (3)

g
I;k

0 juI;k+1
0 j � jCI;kj+ !1

NX
I=1

kuI;kk1:

Otherwise, suppose that for some 1 � j � n; u
I;k+1
j

= max
i

u
I;k+1
i

: Then from the di�erence

equation (3) we have that

(1 + �tm
I;k

j
+

�t

�x
g
I;k

j
)u

I;k+1
j

�
�t

�x
g
I;k

j�1u
I;k+1
j�1 = u

I;k

j
:

8



Rearranging terms and using the inequality u
I;k+1
j�1 � u

I;k+1
j

; we �nd

(1 + �tm
I;k

j
)u

I;k+1
j

+�t
g
I;k

j
� g

I;k

j�1

�x
u
I;k+1
j

� u
I;k

j
:

Hence, by (H7) we obtain

(1� !2�t)u
I;k+1
j

� u
I;k

j
� max

i

u
I;k

i
;

which implies the estimate. �

Multiplying equation (3) by wI

j
, summing over j = 1; : : : ; n; I = 1; : : : ; N; and using

Lemmas 1-2 one can easily show that there exists a ~c > 0 such that����P k+1 � P k

�t

���� � ~c: (5)

The bound (5) will be used in the proof of the next lemma where we show that our approx-

imations u
I;k

j
have bounded total variation. This result plays a crucial role in establishing

the subsequential convergence of the di�erence approximation (3) to a weak solution of (1).

We remark again that such a bound is not possible, in general, for a system of conservation

laws (see [23]).

Lemma 3 Assume �t satis�es max f!1; !2g �t < 1. Then there exists a constant c =

c(max
I

jjuI;0jjBV ;max
I

jjCI jjC1(0;T )) such that for all k = 1; � � � ; m, kD�

h

�
uI;k
�
k1 � c; I =

1; : : : ; N .

Proof. Set �
I;k

j
= D�

h

�
u
I;k

j

�
and apply the operator D�

h
to equation (3) to get

�
I;k+1
j

� �
I;k

j

�t
+D�

h

�
g
I;k

j
u
I;k+1
j

� g
I;k

j�1u
I;k+1
j�1

�x

�
+D�

h
(m

I;k

j
u
I;k+1
j

) = 0; 2 � j � n

and for j = 1 we have that

�
I;k+1
1 � �

I;k

1

�t
=

1

�t

 
u
I;k+1
1 � u

I;k+1
0

�x
�
u
I;k

1 � u
I;k

0

�x

!

= �
1

�x

 
u
I;k+1
0 � u

I;k

0

�t
+D�

h
(g

I;k

1 u
I;k+1
1 ) +m

I;k

1 u
I;k+1
1

!
:
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Multiplying each equation by �x sgn(�
I;k+1
j

), using the fact that ��I;ksgn(�I;k+1
j

) � �j�I;kj,

and summing over the indices, j = 1; 2; � � � ; n, we �nd

k�I;k+1k1 � k�
I;kk1

�t

+

nX
j=1

"
D�

h

 
g
I;k

j
u
I;k+1
j

� g
I;k

j�1u
I;k+1
j�1

�x

!
+D�

h
(m

I;k

j
u
I;k+1
j

)

#
sgn(�

I;k+1
j

)�x � 0;

where we set m
I;k

0 = 0 and

D�

h

�
g
I;k

0 u
I;k+1
0

�
= �

u
I;k+1
0 � u

I;k

0

�t
:

Now, simple calculations yield

nX
j=1

D�

h

 
g
I;k

j
u
I;k+1
j

� g
I;k

j�1u
I;k+1
j�1

�x

!
sgn(�

I;k+1
j

)�x

�

nX
j=2

D�

h

 
g
I;k

j
� g

I;k

j�1

�x
u
I;k+1
j�1

!
sgn(�

I;k+1
j

)�x+
u
I;k+1
0 � u

I;k

0

�t
sgn(�

I;k+1
1 )

+D�

h

�
g
I;k

1

�
u
I;k+1
0 sgn(�

I;k+1
1 ):

Thus,

k�I;k+1k1 � k�I;kk1

�t
� max

j

(D�

h

�
g
I;k

j

�
+m

I;k

j
)k�I;k+1k1

+maxj jD
�

h
(D�

h

�
g
I;k

j

�
+m

I;k

j
)j kuI;k+1k1

+

�����uI;k+1
0 � u

I;k

0

�t

����� + ���D�

h

�
g
I;k

1

���� juI;k+1
0 j:

(6)

From Lemmas 1-2, it suÆces to obtain a bound for the term

�����uI;k+1
0 � u

I;k

0

�t

�����. To this end,

consider the boundary condition

g
I;k

0 u
I;k+1
0 = CI;k +

NX
J=1

nX
j=1


I;J�
J;k

j
u
J;k

j
�x:

10



Then, using equation (3) together with summation by parts we obtain

g
I;k

0

 
u
I;k+1
0 � u

I;k

0

�t

!
+

 
g
I;k

0 � g
I;k�1
0

�t

!
u
I;k

0 �
CI;k � CI;k�1

�t

=

NX
J=1

nX
j=1


I;J

"
�
J;k

j

 
u
J;k

j
� u

J;k�1
j

�t

!
+

 
�
J;k

j
� �

J;k�1
j

�t

!
u
J;k�1
j

#
�x

�

NX
J=1

nX
j=1

�
��J;k

j

�
D�

h
(g

J;k�1
j

u
J;k

j
) +m

J;k�1
j

u
J;k

j

�
+ �J

P
(x; �P )

�
P k � P k�1

�t

�
u
J;k�1
j

�
�x

�

NX
J=1

nX
j=1

�
(D�

h
(�

J;k

j
)g

J;k�1
j

� �
J;k

j
m

J;k�1
j

) u
J;k

j
+ �J

P
(x; �P )

�
P k � P k�1

�t

�
u
J;k�1
j

�
�x

+

NX
J=1

�
J;k

1 g
J;k�1
0 u

J;k

0 ;

where �P is between P k�1and P k: Hence, using the bound given in (5) we �nd�����gI;k0

 
u
I;k+1
0 � u

I;k

0

�t

!
+

 
g
I;k

0 � g
I;k�1
0

�t

!
uk0 �

CI;k � CI;k�1

�t

�����
�

NX
J=1

�
sup
j

jD�

h
(�

J;k

j
)g

J;k�1
j

j+ sup
j

j�J;k
j
m

J;k�1
j

j

�
jjuJ;kjj1

+

NX
J=1

~c sup
(x; �P)2[0;xmax]�[0;Pmax]

���J
P
(x; �P )

�� kuJ;k�1k1
+

NX
J=1

j�J;k1 j

 ��CJ;k�1
��+ NX

L=1

sup
j

����L;k�1j

��� kuL;k�1k1
!
:

Now, Lemmas 1-2 imply that there exists a constant � > 0 such that

�����uI;k+1
0 � u

I;k

0

�t

����� � �.

Applying this bound to (6), we conclude that there exists a constant !3 > 0 such that

k�I;k+1k1 � k�I;kk1
�t

� !2 k�
k+1k1 + !3;

and the result is established. �

The next result shows that the di�erence approximations satisfy a Lipschitz-type condi-

tion in t.
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Lemma 4 Assume �t satis�es max f!1; !2g �t < 1. Then there exists an A > 0 such that

for any m > p

nX
j=1

j
u
I;m

j
� u

I;p

j

�t
j�x � A(m� p); I = 1; : : : ; N:

Proof. Summing the �rst equation in (3) over j and multiplying by �xwe obtain

nX
j=1

j
u
I;k+1
j

� u
I;k

j

�t
j�x =

nX
j=1

������gI;kj�1

u
I;k+1
j

� u
I;k+1
j�1

�x
� u

I;k+1
j

g
I;k

j
� g

I;k

j�1

�x
�m

I;k

j
u
I;k+1
j

������x
� sup

j

���gI;kj

��� nX
j=1

j
u
I;k+1
j

� u
I;k+1
j�1

�x
j�x+ sup

j

j
g
I;k

j
� g

I;k

j�1

�x
+m

I;k

j
j kuI;k+1k1

� sup(x;P )2[0;xmax]�[0;Pmax]
��gI(x; P )�� k�I;k+1k1 + !2 ku

I;k+1k1 � A:

Hence

nX
j=1

j
u
I;m

j
� u

I;p

j

�t
j�x �

mX
k=p

nX
j=1

j
u
I;k+1
j

� u
I;k

j

�t
j�x � A(m� p):�

Following [23] we de�ne a family of functions
�
U I

�x;�t

	
by

U I

�x;�t
(x; t) = u

I;k

j
for x 2 [xj�1; xj); t 2 [tk�1; tk); j = 1; :::; n; k = 1; :::; m; I = 1; : : : ; N:

Then, the set of functions
�
U I

�x;�t

	
is compact in the topology of L1((0; xmax)� (0; T )); and

we have the following lemma.

Lemma 5 For I = 1; : : : ; N there exists a sequence
�
U I

�xi;�ti

	
�
�
U I

�x;�t

	
which converges

to a BV ([0; xmax]� [0; T ]) function uI(x; t) in the sense that for all t > 0Z
xmax

0

jU I

�xi;�ti
(x; t)� uI(x; t)j dx! 0;

and Z
T

0

Z
xmax

0

jU I

�xi;�ti
(x; t)� uI(x; t)j dx dt! 0;

12



as i!1. Furthermore, the limit function satis�es

jjuIjjBV ([0;xmax]�[0;T ]) �c(jju
I;0jjBV ,jjC

IjjC1(0;T )).

Proof. The result follows from Lemmas 1-4 and the proof of Lemma 16.7 (page 276) in [23].

�

The next theorem will show that the limit function, u = (u1; u2; : : : ; uN), constructed via

our di�erence scheme is actually a weak solution of problem (1).

Theorem 6 Any limit u(x; t) = (u1(x; t); u2(x; t); : : : ; uN(x; t)) de�ned in Lemma 5 is a weak

solution of (1) and satis�es

P (t) � max
I=1;:::;N

jjwIjj1

NX
I=1

kuI(t)k1

� max
I=1;:::;N

jjwIjj1

 
e!1NT

NX
I=1

kuI;0k1 +

NX
I=1

Z
T

0

e!1(T�s)CI(s) ds

!
= �P

and

kuIkL1((0;xmax)�(0;T )) � max

(
e!2T kuI;0k1;

kCIk1 + !1

P
N

I=1 ku
I(t)k1

�1

)
;

where �1 � gI(0; P ) for P 2 [0; �P ];I=1,: : : ; N .

Proof. This result can be easily established by using similar techniques as in the proof of

Lemma 16.10 (page 279) in [23]. �

The following theorem guarantees the continuous dependence of the solution fuI;k
j
g to

(3) with respect to the initial condition uI;0.

Theorem 7 Let fuI;k
j
g and fûI;k

j
g be the solutions of (3) corresponding to the initial condi-

tions u
I;0
j

and û
I;0
j
, respectively. Then there exists a

� = (max
k;I

jjûI;kk1;max
k;I

kûI;kk1;max
k;I

kD�

h

�
ûI;k
�
k1)

13



such that

NX
I=1

kuI;k+1 � ûI;k+1k1 � [1 + (!1 + �max
I

jjwIjj)�t]

NX
I=1

kuI;k � ûI;kk1

for all k � 0.

Proof. Let v
I;k

j
= u

I;k

j
� û

I;k

j
for 0 � k � m and 0 � j � n. Then v

I;k

j
satis�es the following8>>>>>>>>>>><>>>>>>>>>>>:

v
I;k+1
j

� v
I;k

j

�t
+D�

h

�
g
I;k

j
u
I;k+1
j

� ĝ
I;k

j
û
I;k+1
j

�
+m

I;k

j
v
I;k+1
j

+ (m
I;k

j
� m̂

I;k

j
)û

I;k+1
j

= 0; 1 � j � n

g
I;k

0 u
I;k+1
0 � ĝ

I;k

0 û
I;k+1
0 =

P
N

J=1

P
n

i=1 

I;J�

J;k

i
v
J;k

i
�x

+
P

N

J=1

P
n

i=1 

I;J

�
�
J;k

i
� �̂

J;k

i

�
û
J;k

i
�x;

(7)

where ĝ
I;k

j
= gI(xj; P̂

k), and similar notation is used for the rest of the parameters. Multi-

plying each equation of (7) by �x sgn(v
I;k+1
j

), summing over j = 1; : : : ; n, I = 1; : : : ; N; and

using the following fact:P
n

j=1D
�

h

�
g
I;k

j
u
I;k+1
j

� ĝ
I;k

j
û
I;k+1
j

�
sgn(v

I;k+1
j

)�x � �gI;k0 jvI;k+1
0 j

+
P

n

j=1D
�

h

h
(g

I;k

j
� ĝ

I;k

j
)û

I;k+1
j

i
sgn(v

I;k+1
j

)�x;

we get that

NX
I=1

kvI;k+1k1 � kvI;kk1

�t
� �

NX
I=1

nX
j=1

D�

h

h
(g

I;k

j
� ĝ

I;k

j
)û

I;k+1
j

i
sgn(v

I;k+1
j

)�x

+

NX
I=1

g
I;k

0 jvI;k+1
0 j �

NX
I=1

nX
j=1

(m
I;k

j
� m̂

I;k

j
)û

I;k+1
j

sgn(v
I;k+1
j

)�x

�

NX
I=1

nX
j=1

m
I;k

j
jvI;k+1
j

j�x:

Now, using assumption (H4) we can easily obtain the following

�
P

N

I=1

P
n

j=1D
�

h

h
(g

I;k

j
� ĝ

I;k

j
)û

I;k+1
j

i
sgn(v

I;k+1
j

)�x

� (c1max
I

kûI;k+1k1 + c2max
I

kûI;k+1k1 + c3max
I

kD�

h

�
ûI;k+1

�
k1) jP

k � P̂ kj:

14



Furthermore, it follows from the second equation of (3) and assumptions (H2), (H3) and

(H6) that P
N

I=1 g
I;k

0 jvI;k+1
0 j �

P
N

I=1

P
n

j=1(m
I;k

j
� m̂

I;k

j
)û

I;k+1
j

sgn(v
I;k+1
j

)�x

�
P

N

I=1

P
n

j=1m
I;k

j
jv

I;k+1
j

j�x � !1

P
N

I=1 kv
I;kk1

+(c4max
I

jjûI;k+1jj1 + c5max
I

kûI;k+1k1) jP
k � P̂ kj:

Hence, choosing � > 0 so that

(c1 + c4)max
I

kûk+1k1 + (c2 + c5)max
I

kûk+1k1 + c3max
I

kD�

h

�
ûk+1

�
k1 � �;

we obtain

NX
I=1

kvI;k+1k1 � [1 + (!1 + �max
I

jjwIjj1)�t]

NX
I=1

kvI;kk1;

which implies the theorem. �

Next, we prove that the BV solution de�ned in Lemma 5 and Theorem 6 is unique. To

this end, assume that P (t) 2 C1(0; T ) and BI (t) 2 C(0; T ) are given functions and consider

the following initial-boundary value problem:8>>>><>>>>:
uI
t
+ (gI(x; P (t))uI)x +mI(x; P (t))uI = 0; (x; t) 2 (0; xmax]� (0; T ];

gI(0; P (t))uI(0; t) = BI(t); t 2 (0; T ];

uI(x; 0) = uI;0(x); x 2 [0; xmax]:

(8)

Then one can easily show that (8) has a unique weak solution (note that this system is

uncoupled and has a local boundary condition). In fact, a weak solution can be de�ned as

a limit of the �nite di�erence approximation (3) with the given numbers P k = P (tk) and

uniqueness can be established by using a similar technique as in [23, Page 282]. Hence, the

�nite di�erence solution to (3) with given numbers P k = P (tk) and BI;k = BI(tk) converges

15



to the unique solution of (1) with the given P 2 C1(0; T ) and BI 2 C(0; T ). In addition,

from the proof of Theorem 7 we can easily show that if fukg and fûkg are the solutions to

(3) corresponding to given functions (P k; BI;k) and (P̂ k; B̂I;k), respectively, then we have

NX
I=1

kvI;k+1k1 �

NX
I=1

kvI;kk1 + ��t jP k � P̂ kj+�t

NX
I=1

jBI;k � B̂I;kj;

where vI;k = uI;k � ûI;k. Equivalently,

NX
I=1

kvI;kk1 �

NX
I=1

kvI;0k1 +

k�1X
i=0

"
� jP i � P̂ ij +

NX
I=1

jBI;i � B̂I;ij

#
�t: (9)

Now, since from Theorem 6 for I = 1; : : : ; N; fU I

�x;�t
g converges to uI(x; t) and fÛ I

�x;�t
g

converges to ûI(x; t) strongly in C([0; T ];L1(0; xmax)), taking the limit in (9) we obtain

NX
I=1

kvI(t)k1 �

NX
I=1

kvI(0)k1 +

Z
t

0

"
� jP (s)� P̂ (s)j +

NX
I=1

jBI(s)� B̂I(s)j

#
ds; (10)

where u(x; t); û(x; t) are the unique solutions to (8) given (P (t); BI(t)) and (P̂ (t); B̂I(t)),

respectively, and vI(t) = uI(�; t)� ûI(�; t). Then, applying the estimate given in (10) for the

corresponding solutions to (8) where

P (t) =

NX
I=1

Z
xmax

0

wI(x)uI(x; t) dx;

BI(t) = CI(t) +

NX
J=1

Z
xmax

0


I;J�J(x; P (t))uJ(x; t) dx;

P̂ (t) =

NX
I=1

Z
xmax

0

wI (x) ûI(x; t) dx;

B̂I(t) = CI(t) +

NX
J=1

Z
xmax

0


I;J�J(x; P̂ (t))ûJ(x; t) dx

are de�ned in Theorem 6, we obtain the following result.

Theorem 8 Suppose that u and û are two bounded variation weak solutions of (1) corre-

sponding to initial conditions u0 and û0, respectively. Then

NX
I=1

kuI(t)� ûI(t)k1 � e[(�+N maxI jj�P ûjj1)maxI jjw
I
jj1+N!1]t

NX
I=1

kuI(0)� ûI(0)k1;
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which means that the bounded variation weak solution to (1) is unique.

Hence, from Theorem 8 it follows that the �nite di�erence solution converges to the

unique bounded variation solution of (1).

3. Numerical Results

In this section, we provide some numerical results that corroborate the convergence theory

presented in Section 2 and demonstrate the e�ect of the probability function 
I;J on the

dynamics of this system. For the rest of this section we assume that xmax = 1; N = 2; and

the weight functions wI = 1. This implies that P =
R 1

0
[u1(x; t) + u2(x; t)] dx. We choose

the parameters gI, �I , mI , and CI as follows:

gI(x; P ) = gI0k
If I(P )(1� x); �I(x; P ) = �I0(1� kI)f I(P )x; mI(x; P ) = mI(P ); CI(t) = 0;

where kI 2 (0; 1); I = 1; 2. Hence, our model reduces to8>><>>:
uI
t
+ gI0k

I

f I(P )((1� x)u
I
)x +m

I
(P )u

I
= 0; x 2 (0; 1]; t > 0;

gI0k
IuI(0; t) =

P2
J=1 


I;J�J0 (1� kJ)

Z 1

0

xuJ(x; t)dx; t > 0;

uI(x; 0) = uI;0(x); x 2 [0; 1]; I = 1; 2:

(11)

Integrating (11) and multiplying (11) by x and integrating once again, we readily obtain the

following system of di�erential equations:( �
P I
�0
=
X2

J=1

I;J�J0 (1� kJ)fJ(P )QJ �mI(P )P I I = 1; 2;�

QI
�0
= gI0k

If I(P )(P I �QI)�mI(P )QI; I = 1; 2;
(12)

where P I =
R 1

0
uI(x; t)dx and QI =

R 1

0
xuI(x; t)dx; I = 1; 2: In our numerical simulations we

have used f 1(P ) = e�0:5P , f 2(P ) = e�0:1P ; m1(P ) = 0:3P , m2(P ) = 2P=(1 + P ), k1 = 0:5;

k2 = 0:7; �I0 = 1, gI0 = 1, t 2 [0; 10] and

u1;0(x) =

�
5 x 2 [0; 0:3]

0 x 2 (0:3; 1]
; u2;0(x) =

�
8 x 2 [0; 0:2]

0 x 2 (0:2; 1]
:

To test our code we compute (P I ; QI), I = 1; 2; the solution of (12) using a 4� 5th order

Runge Kutta routine available in MATLAB 5.3. We then compare the total population,

17



�
P I
��x

(t); and the total biomass,
�
QI
��x

(t); that result from the �nite di�erence system

described in Section 2 (with �x = 0:02; and �t = 0:01) to the numerical solution
�
P I ; QI

�
of

the di�erential equation system (12) that results from the Runge Kutta routine. In Figures

1-2 we present the di�erences
�
P I
��x

(t)� P I(t) and
�
QI
��x

(t)� QI(t), respectively. The

�gures indicate that the �nite di�erence approximation provides a good approximation to

the solution of (11). Next we present two di�erent dynamics for the total population and

total mass depending on the choice of 
I;J .

3.1. Closed reproduction case

In this case, we assume that reproduction is closed under subpopulations, that is, individ-

uals in the I-th subpopulation only produce individuals in the I-th subpopulation. Hence,


I;I = 1; I = 1; 2; and 
I;J = 0, I 6= J . Solving (11) we present the total populations�
P I
��x

(t); I = 1; 2; and total mass
�
QI
��x

(t); I = 1; 2, in Figures 3-4, respectively. Note

that in this case the second subpopulation goes to extinction. Similar phenomena have

been known to occur in di�erent structured and non-structured population models, where

the surviving subpopulation is often referred to as the �ttest among the others (e.g., see

[4, 17]).

3.2. Open reproduction case

In this case, we assume that reproduction is open under subpopulations, that is, a sub-

population of type I also reproduces individuals of type J . For our numerical example we set


I;J = 1
2
; I; J = 1; 2. However, we have performed many other numerical experiments with

di�erent positive 
I;J ; and the dynamics are essentially the same. In Figures 5-6 we present

the total subpopulations
�
P I
��x

(t); I = 1; 2; and total mass
�
QI
��x

(t), respectively. Note

that in this case both populations survive and approach an equilibrium.
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Figure 1: The di�erence between the total population resulting from the �nite di�erence

scheme and the total population resulting from solving the di�erential equations system

using Runge-Kutta routine.
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Figure 2: The di�erence between the total mass resulting from the �nite di�erence scheme

and the total mass resulting from solving the di�erential equations system using Runge-Kutta

routine.
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Figure 3: The computed total population
�
P I
��x

(t); I = 1; 2; on the interval [0; 30]:
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Figure 4: The computed total mass
�
QI
��x

(t); I = 1; 2; on the interval [0; 30]:
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Figure 5: The computed total population (P I)�x(t); I = 1; 2; on the interval [0; 30]:
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Figure 6: The computed total mass
�
QI
��x

(t); I = 1; 2; on the interval [0; 30]:
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4. Regularity of Weak Solutions

The goal of this section is to show that the bounded variation weak solution of problem (1)

is continuous provided that the initial distributions uI;0; I = 1; : : : ; N; satisfy the following

compatibility conditions:

(H9) Let P 0 =
NP
I=0

R
xmax

0
wI (x) uI;0(x)dx, gI;0(x) = gI(x; P 0), �I;0(x) = �I (x; P 0) and

mI;0 (x) = mI (x; P 0), I = 1; : : : ; N . Assume that the function uI;0 is a nonnegative

continuous function and satis�es

gI;0(0)uI;0(0) = CI(0) +

NX
J=1

Z
xmax

0


I;J�J;0 (x) uJ;0(x)dx; I = 1; : : : N:

It is worth pointing out that the following result demonstrates the remarkable di�erence

between nonlocal quasilinear hyperbolic initial-boundary value problems similar to (1) and

local quasilinear hyperbolic problems since it is well known that solutions of local problems

can attain discontinuities in �nite time.

Theorem 9 Under the additional assumption (H9) the bounded variation weak solution of

problem (1) is continuous.

Proof. Let �̂I and m̂I be nonnegative continuously di�erentiable functions. Furthermore,

assume that ĝI is twice continuously di�erentiable in x and continuously di�erentiable in

t; ĝI(x; t) > 0; x 2 [0; xmax) and ĝI(xmax; t) = 0, t 2 [0; T ]. Consider the following initial-

boundary value problem:8>>>>>>><>>>>>>>:

vI
t
+ (ĝI(x; t)vI)x + m̂I(x; t)vI = 0; (x; t) 2 (0; xmax)� (0; T );

ĝI(0; t)vI(0; t) = CI(t) +

NX
J=1

Z
xmax

0


I;J �̂J(x; t)vJ(x; t) dx; t 2 (0; T );

vI(x; 0) = uI;0(x); x 2 [0; xmax]:

(13)
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It follows from the results in Section 2 that problem (13) has a unique bounded variation

weak solution. Furthermore, using standard arguments (e.g., see [1, 8, 12, 19]) one can see

that a characteristic curve passing through (bx;bt) is given by (XI(t; bx;bt); t), where XI satis�es

d

dt
XI(t; bx;bt) = ĝI(X(t; bx;bt); t)

and XI(bt; bx;bt) = bx. By the assumptions on ĝI the function XI is a strictly increasing

function, and therefore a unique inverse function � I(x; bx;bt) exists. Hence if we de�ne GI(x) =

� I(x; 0; 0), then (x;GI(x)) represents the characteristic curve passing through (0; 0) and this

curve divides the (x; t)-plane into two parts. And the weak solution vI of problem (13) has

the following implicit representation

vI(x; t) =

8>>>>>><>>>>>>:

uI;0(XI(0; x; t))�

exp
n
�
R
t

0
[ĝI
x
(XI(s; x; t); s) +mI(XI(s; x; t); s)]ds

o
t � GI(x);

RI(� I(0; x; t))�

exp
n
�
R
t

�I(0;x;t)
[ĝI
x
(XI(s; x; t); s) + m̂I(XI(s; x; t); s)]ds

o
t > GI(x);

(14)

where RI(t) = 1=ĝI(0; t)
h
CI(t) +

P
N

J=1

R
xmax

0

I;J �̂J(x; t)vJ(x; t)dx

i
.

Now, let P (t) =
P

N

J=1

R
xmax

0
wI (x) uI(x; t)dx where uI is the unique bounded variation

weak solution of problem (1). Using (H2)-(H4) we see that ĝI(x; t) � gI(x; P (t)), �̂I(x; t) �

�I(x; P (t)) and m̂I(x; t) � mI(x; P (t)) satisfy the above requirements. Then, using (H8), the

solution representation (14) and standard arguments as in [1] it follows that vI is continuous

for this choice of parameters. Furthermore, by uniqueness of solutions, vI coincides with

the solution component uI of the nonlinear problem (1), I = 1; : : : ; N . This establishes the

result.�

23



5. Concluding Remarks

In this paper we presented a model that describes the evolution of N subpopulations

competing for common resources. Our numerical results indicate that the parameters 
I;J

play a crucial role in the dynamics of these subpopulations. Several interesting questions

about the model (1) arise naturally: What is a good measure (in terms of the rates gI,

mI and �I) that will lead to the survival of the �ttest in a closed reproduction case? In

an open reproduction case, which populations will survive and which will go to extinction?

We mention that for special cases of structured age and age-size population models, it was

proved in [17] that under closed reproduction a good measure of species �tness is the product

of the birth rate function and the survivorship function. To our knowledge, however, no

results concerning the open reproduction case for structured populations are available. For a

classical Lotka-Volterra competition model which is represented by a system of N di�erential

equations, conditions on the growth and mortality rates of each population that will result

in its survival or extinction have been discussed recently by several researchers (e.g., see

[5, 6, 7, 21, 22]). Our future e�orts will focus on generalizing such results to the distributed

rate structured model presented in (1).

ACKNOWLEDGMENTS

The research of the �rst author was supported in part by the Louisiana Education Quality

Support Fund under grant LEQSF(1996-99)-RD-A-36, while the research of the second au-

thor was supported in part by the Air Force OÆce of Scienti�c Research under grant AFOSR

F49620-98-1-0180.

24



References

[1] A.S. Ackleh and K. Deng, A Monotone Approximation for the Nonautonomous Size-

Structured Population Model, Quart. Appl. Math., 57 (1999), 261-267.

[2] A.S. Ackleh and K. Deng, A Monotone Approximation for a Nonlinear Nonautonomous

Size-Structured Population Model, Appl. Math. Comput., 108 (2000), 103-113.

[3] A.S. Ackleh and K. Ito, An Implicit Finite Di�erence Scheme for the Nonlinear Size

Structure Model, Numer. Funct. Anal. Optim., 18 (1997), 865-884.

[4] A.S. Ackleh, D. Marshall, B.G. Fitzpatrick and H.E. Heatherly, Survival of the Fittest

in a Generalized Logistic Model, Math. Models Methods Appl. Sci., 9 (1999), 1379-1391.

[5] S. Ahmed, Extinction of Species in Nonautonomous Lotka-Volterra Systems, Proc.

Amer. Math. Soc., 127 (1999), 2905-2910.

[6] S. Ahmed and A.C. Lazer, One Species Extinction in an Autonomous Competition

Model, Proc. First World Congress Nonlinear Analysts, Walter DeGruyter, Berlin, 1995.

[7] S. Ahmed and F. Montes de Oca, Extinction in Nonautonomous T -periodic Lotka-

Volterra System, Appl. Math. Comput., 90 (1998), 155-166.

[8] H.T. Banks, L.W. Botsford, F. Kappel and C. Wang, Modeling and Estimation in Size

Structured Population Models, Math. Ecology, T.G. Hallam, L.J. Gross and S.A. Levin

(Eds.), Singapore: World Scienti�c, 1988, pp. 521-541.

[9] H.T. Banks and B.G. Fitzpatrick, Estimation of Growth Rate Distribution in Size Struc-

ture Population Models, Quart. Appl. Math., 49 (1991), 215-235.

[10] H.T. Banks, B.G. Fitzpatrick, L.K. Potter, and Y. Zhang, Estimation of Probability Dis-

tributions for Individual Parameters Using Aggregate Population Observations, Stochas-

25



tic Analysis, Control, Optimization and Applications, W. Mceneaney, G. Yin, Q. Zhang

(Eds.), Birkh�auser, 1998, pp. 353-371.

[11] H.T. Banks and F. Kappel, Transformation Semigroups and L1-Approximation for Size

Structure Population Models, Semigroup Forum, 38 (1989), 141-155.

[12] H.T. Banks, F. Kappel and C. Wang, Weak Solutions and Di�erentiability for Size

Structured Population Models, Birkh�auser Internat. Ser. Numer. Math., 100 (1991),

35-50.

[13] A. Calsina and J. Saldana, A Model of Physiologically Structured Population Dynamics

with a Nonlinear Growth Rate, J. Math. Biol., 33 (1995), 335-364.

[14] M.G. Crandall and A. Majda, Monotone Di�erence Approximations for Scalar Conser-

vation Laws, J. Math. Comp., 34 (1980), 1-21.

[15] B.G. Fitzpatrick, Vector Valued Measure Approach for a Size Structured Population

Model, J. Math. Anal. Appl., 172 (1993), 73-91.

[16] B.G. Fitzpatrick, Rate Distribution Modeling for Structured Heterogeneous Populations,

Birkh�auser Internat. Ser. Numer. Math., 118 (1994), 131{141.

[17] S.H. Henson and T.G. Hallam, Survival of the Fittest: Asymptotic Competitive Ex-

clusion in Structured Population and Community Models, Nonlinear World, 1 (1994),

385-402.

[18] W. Huyer, A Size Structured Population Model with Dispersion, J. Math. Anal. Appl.,

181 (1994), 716{754.

[19] K. Ito, F. Kappel and G. Peichl, A Fully Discretized Approximation Scheme for Size-

Structured Population Models., SIAM J. Numer. Anal., 28 (1991), 923-954.

26



[20] R. Leveque, Numerical Methods for Conservation Laws, Birkh�auser, Boston, 1990.

[21] F. Montes de Oca and M.L. Zeeman, Balancing Survival and Extinction in Nonau-

tonomous Competitive Lotka-Volterra Systems, J. Math. Anal. Appl., 192 (1995), 360-

370.

[22] F. Montes de Oca and M.L. Zeeman, Extinction in Nonautonomous Competitive Lotka-

Volterra Systems, Proc. Amer. Math. Soc., 124 (1996), 3677-3687.

[23] J. Smoller, Shock Waves and Reaction-Di�usion Equations, Springer-Verlag, New York,

1994.

27


